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The Verisimilitude of the Independent Pixel 
Approximation Used in Cloud Remote Sensing 

Alexander Marshak,*'* Anthony Davis, Warren Wiscombe,* 
and Georgii Titov* 

W e  assess the validity of the 3ndependent pixel ap- 
proximation ~ (IPA) using Monte Carlo simulations of real- 
istic scale-invariant clouds modeled with 2-D horizontal 
variations in optical depth. The IPA uses a plane-parallel 
approximation for each pixel, and is used in virtually all 
cloud remote sensing algorithms. We confirm the validity 
of the IPA at the largest scales and demonstrate its 
shortcomings on the smallest scales: a) It overestimates 
the variability of the radiation field when the optical depth 
field is known, and b) it underestimates the variability of 
the optical depth field when the radiation field is known. 
Both effects are due to smoothing by horizontal fluxes. 

INTRODUCTION 

Not only mean optical depth but also its spatial distribu- 
tion affects cloud radiative properties (Stephens, 1985; 
1986). Lovejoy (1982) showed that cloud shapes are 
fractal. There is little doubt that this is due to atmo- 
spheric turbulence as it is well established that turbu- 
lence produces fractal structures (e.g., Mandelbrot, 1982). 
Together these facts suggest that cloud internal struc- 
ture can be simulated with fractal models adapted from 
turbulence theory. Cahalan et al. (1994a) introduced 
such a fractal cascade model, which simulates the hori- 
zontal variability of liquid water observed in marine 
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stratocumulus clouds. The scaling properties of this 
model were studied in detail by Marshak et al. (1994). 
For scaling processes, one consequence is power-law be- 
havior of the energy spectrum 

E(k) o~k -B (1) 

over a large range of scales r~- 1/k. Cahalan and Snider 
(1989), and Davis et al. (1994) find power-law spectra 
of liquid water in marine stratocumulus, with/~ in the 
range 1.5-5/3. 

Monte Carlo (MC) methods are the simplest numer- 
ical tools for studying the radiative properties of inhomo- 
geneous clouds. A rigorous treatment of the MC tech- 
nique in atmospheric optics can be found in Marchuk 
et al. (1980). Early 3-D Monte Carlo cloud radiation 
calculations (McKee and Cox, 1974) focused exclusively 
on internally homogeneous cubic clouds. Such unrealis- 
tic models gave way to applying MC to fractal and 
multifractal cloud models [Cahalan, 1989; Davis et al., 
1990; 1991; Barker and Davies, 1992; Evans, 1993, 
implementing O'Brien's (1992) backward Monte Carlo; 
Cahalan et al., 1994b]. 

For inhomogeneous clouds, Cahalan (1989) pro- 
posed the independent pixel approximation (IPA), which 
approximates the radiation properties of each pixel using 
plane-parallel radiative transfer theory. When the IPA 
is valid, the only information needed is the probability 
of occurrence of a given optical depth, independently 
of neighboring values. This reduces considerably the 
computer time needed to calculate accurate cloud albe- 
does. In essence, a full 3-D radiation calculation is 
replaced by an ensemble of plane-parallel calculations. 
Cahalan et al. (1994a,b) apply both MC and IPA to a 
simple 1-D horizontal fractal model of internal variabil- 
ity for marine stratocumulus clouds, ignoring the effect 
of cloud shape. Cahalan et al. (1994a) find significant 
"plane-parallel b iases ' -  differences in domain-averaged 
albedo using the IPA and plane-parallel theory using 
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the domain-averaged optical thickness. Then Cahalan L I 
et al. (1994b) assessed MC-to-IPA biases and found 
them to be relatively small for the domain-averaged 
radiation properties but large for individual pixels. 

In this article we address a question that comple- 
ments Cahalan et al.'s results for domain-averaged al- 
bedo: Does the IPA accurately predict the observed 0 
variability of the albedo field? Equivalently, we can 
ask in Preisendorfer's (1978) terms: Does the apparent L 
optical depth field (retrieved from the observed albedoes 
using the IPA) bear any resemblance to the inherent 
optical depth field? We first (in the next section) de- L/2 
scribe a 2-D scale-invariant bounded cascade model 
which is a straightforward generalization of the 1-D 
model of Cahalan et al. (1994a). This model determines 0 
the inherent structure of the cloud. In the third section 
we discuss briefly a 3-D MC method that exploits a L 
variance reduction technique called the Maximal Cross- 
Section Method and define a simple IPA-based proce- 
dure to retrieve the optical depth field from the MC 
albedoes. This procedure determines the apparent struc- 
ture of the cloud. Finally, in the fourth section we 
estimate the accuracy of the IPA and its range of applica- 0 
bility by comparing the smoothness properties of the 
MC and IPA albedo and optical depth fields. 

We adopt here the simplest possible measure of 
"smoothness": the spectral exponent ]/ in Eq. (1), as 
determined by linear regression of log E(k) versus log 
k, all scales (k's) combined. In a more detailed study 
(Davis et al., 1995), we shall show that, rather than 
changing this "effective" 1/, the horizontal fluxes that are 
responsible for MC-to-IPA differences reduce the range 
of scales where Eq. (1) applies. 

//  

INHERENT CLOUD STRUCTURE 

Clouds are turbulent environments; we therefore follow 
accepted phenomenology and simulate clouds with multi- 
plicative cascade models. We will first describe the 
construction of a 2-D cascade model with random but 
identically distributed weights and then illustrate the 
choice of weights for a simple 1-D case. A rigorous 
formalism for random cascades can be found in Holley 
and Waymire (1992). 

Consider a homogeneously distributed quantity (say 
optical depth, to) in a square X = [0,L] x [0,L] (see Fig. 
1 with r0 equal to 1 for simplicity). First we subdivide 
X into four subsquares of side length r: -- L / 2 and redis- 
tribute ro over each of these subsquares as roW::, roW12, 
roWla, and r0Wx4, where Wlj, (j = 1 . . . . .  4) are nonnega- 
tive identically distributed random numbers (weights). 
The distribution must have unit mean so that, averaged 
over a large number of steps and realizations, the mean 
of the W's is unity. [For a strictly mass-conserving cas- 

Square domain with uniformly 
distributed unit mass 

L/2 

L 

I 1-st Cascade Step] 

Randomly redistributed mass over 4 
equal subsquares 

Wn+ W12+ W13+ W14 = 4 

} r:=C/2 

2-nd Cascade Step I 

L/4 
4 

WliW~= 16 
i,j=l 

I And so on... I 

Figure 1. Construction of a mass-conserving 2-D multiplica- 
tive cascade model. Starting with a homogeneous square of 
size [0,L] x [0,L], one first redistributes the unit mass over 
four subsquares of equal size. This is equivalent to multiply- 
ing the previously uniform density field on each subsquare 
of side length rl = L / 2 by Wl~ (j-- 1 . . . . .  4), where 
,~__~4 1Wlj = 4. The same procedure is repeated at smaller 
scales r, = L / 2" using4weights W,j (j = 1 . . . . .  4) for each of 
4" subsquares with ~,jl~....~.lWlj~W2n • • • W,/, ~ 4", n > 1. The 
case of n = 2 is shown on a bottom panel. 

cade, the mean of the four W's is forced to unity for 
every cascade step (as in Fig. 1).] At the next cascade 
step, each of subsquares is further subdivided into four 
subsquares of side length r2 -- L / 4, and the optical depth 
is again redistributed as roW:~W2j (i,j= 1 . . . . .  4) over 
all 16 subsquares. Proceeding iteratively, at the nth step 
the original square X is divided into 4" subsquares of 
side length rn = L /2"  and the optical depth of each 
subsquare rn is given by the product of r0 and n weights 
Wi~ (i = 1 . . . . .  n), where index j randomly takes one of 
its four values. After n iterations, the 4 n subsquares of 
area r, x r, are assumed homogeneous (small scale homo- 
geneity assumption), and the overall average ( r , ) =  r0. 

If n "~ oo, the optical depth of an individual subsquare 
rn may or may not be bounded depending on the distri- 
bution from which the W's are selected. Unbounded or 
"singular" cascade models will have r, ~ 0 for almost all 
cells as n ~ ~ ,  since ( r , )  = r0 for any n. Bounded cascade 
models have upper and lower bounds: 0 < rmi, ~< limx,~< 
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7max < 00. To make a cascade model bounded, it is neces- stratocumulus deck, 300 m thick and 6.4 km on a side for 

sary (but not sufficient) that the Ws -t 1 as n -t w (Mar- the basic element; the mean extinction coefficient o,,,,, = 

shak et al., 1994), that is, the distribution from which I3 / 0.3 = 43 km-‘; the mean single-pixel horizontal opti- 

the Ws are drawn must become more and more cen- cal thickness rpix = o,,,,,r,, = 2.2; and the total horizontal 

tered around unity as n + 00. optical thickness per basic element rh = 128rrix = 277. 

For vertically integrated liquid water in stratocumu- 
lus, Cahalan et al. (1994a) use a 1-D two-parameter 
bounded cascade model with weights W, = 1 f (1 - 2P) I 
2(n-1)n, at scale r,, = L /2”, where “f ” means that the 
weights 1 + (1 - 2p) / 2(“-ip and 1 - (1 - 2p) I 2(“-1)H are 
taken with equal probability. The parameter p (O<p< l/2) 
controls the variance-to-mean ratio of the cloud liquid 
water distribution and the parameter H 3 0 defines its 
scaling behavior. If H = 0, we retrieve Meneveau and 
Sreenivasan’s (1987) “P-model,” a singular cascade model 
originally designed to simulate the dissipation field in 
turbulence. As soon as H > 0, the distributions of Ws 
contracts around unity as n+ 00, as required for a 
bounded model, and (Cahalan et al., 1994a), 

CALCULATION OF APPARENT CLOUD 
PROPERTIES 

Monte Carlo 

The MC method applied to the above optical depth 
model is a forward one which tracks photons from their 
source to their eventual exit. However, in order to reduce 
MC noise, we do not use a direct method but rather 
simulate photon histories that diier from the physical 
ones. Among the large number of variance reduction 
techniques developed mostly for neutron transport, we 
use a lesser known one called maximal cross-section 
method (Marchuk et al., 1980). It involves transforming 
the radiative transfer equation for multiple scattering 
from F<exp 

[ 1 q1- 2P) < o. 
2”-1 . 

(2) 

The spectral exponent /3 in the limit of n + 00 shows 
different behavior for singular (H = 0) models 

0</3= -logz[l-2p(l-p)]<l, 

and bounded (H >O) models, 

(3a) 

1</3=min12H,l) +lQ2, (3b) 

the last result being independent of p (Marshak et al., 
1994). Setting H = 1 I3 yields fi = 5 13, as observed for 
stratocumulus liquid water path from a microwave radi- 
ometer (Cahahm and Snider, 1989). 

A simple 2-D generalization of the above 1-D mass- 
conserving bounded model gives us a three-parameter 
model with weights 

{ 

w”l= 1 + (1 - 2p1) /2(“_‘)H, wn2 = 2 - Wnl, 

w, = 1 + (1 - 2p2) I 2@- ‘)H, w,,=2- w,, 

which are taken randomly with equal probability, that 
is, the probability distribution is just a sum of four 
d-functions, at these four values. Figure 2a illustrates a 
realization of this model with H = 1 / 3 and n = 7 (128 x 128 
pixels), where PI= 0.26 and P2 = 0.34. (To estimate the 
upper bound T,,,,, in 2-D case, one can use Eq. (2) with 
p = min[pl,pz) .) Setting the mean vertical optical depth 
to= 12 gives a range of optical depth from 1.4 to 65.1. 
The parameters remaining to be defined are the geomet- 
rical vertical (h) and horizontal (L) sizes. Since marine 
stratocumulus are typically 200-400 m thick, we take 
h= 300 m in the vertical and, to get a pixel size near 
the size of a Landsat pixel (30 m), we take r,= 50 m 
(hence overall horizontal size L = 128 x 50 m = 6.4 km). 
We apply cyclical boundary conditions to emulate a large 
horizontal extention. Thus our cloud can be viewed as a 

Q *V1(r,CJ) + o(r)I(r,fl) 

= mo(r)a(r)\,JyQ * nq.qr,q cm’ 

to 

(44 

where a,,,,= max a(r) is the maximal extinction, mo is 
allr 

the single scattering albedo, and P is the angular scatter- 
ing probability distribution or phase function. Equation 
(4b) can be interpreted as the transport equation with 
constant extinction and a modified phase function equal 
to m(r)P(QS2’) with probability a(r) I a,,,, and S(Q -a’) 
otherwise (like the B-Eddington method but position- 
dependent). This method allows each photon to jump 
immediately to its next scatter point rather than accumu- 
lating optical depth cell-by-cell. This makes MC code 
computer time almost insensitive to 1) whether we use 
l-D, 2-D, or 3-D geometry, 2) the variability of o(r) 

except for very large onax, and 3) the number of cells. 
All three of these substantially slow down straightfor- 
ward MC in inhomogeneous media. The above tech- 
nique is very economical: For fractal clouds simulated 
on a 128 x 128 grid, we were able to run 100 million 
photons in 20 h on an HPI 9000 workstation; this is 
sufficient to give better than 1% accuracy in every pixel 
for cloud fluxes in albedo and in transmittance. 

Figure 3a shows cloud albedo R,, for a 128 x 128 
grid calculated by our Monte Carlo code with lo8 pho- 
tons and no absorption [so(r) = ZDO = 11. Solar zenith angle 
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is 60 ° , and the cloud is illuminated from the top of the 
image; the phase function is Henyey and Greenstein's 
(1941) with asymmetry factor g= 0.843 (typical for scat- 
tering by cloud droplets at wavelengths 0.3-1/zm). 

Although remote sensing is based on radiances rather 
than fluxes, we will continue to use albedo as a surrogate 
for radiance measured by a nadir-looking instrument. 
In an upcoming study (Davis et al., 1995), we shall show 
that the two fields are closely related, at least in the 
class of clouds models under consideration here. 

Optical Depth Retrievals in the Independent 
Pixel Approximation 
The independent pixel approximation (IPA) assumes 
that the reflectivity of each cloud pixel depends only 
on its own optical depth and not on the optical depth 
of neighboring pixels (Cahalan, 1989; Cahalan et al., 
1994a; Cahalan, 1994). In other words, the IPA uses a 
1-D plane-parallel approach for each pixel and neglects 
any net horizontal photon transport. 

To simulate an IPA, we used a 1-D albedo approxi- 
mation, R,p derived by Cahalan et al. (1994a) for conser- 
vative scattering: 

R,p(l";~,g) = 1 - Tip(l';0,g), 

Tl,(r;a,g) = ~(0) + [1 - ~(0)] exp[ -  r/la(O)l] (5) 
1 + y(g)r 

where TI, is transmittance, r is the cloud optical depth, 
0 is the solar zenith angle, and g is the asymmetry factor. 
We use the following values of the functions 6(0), a(O), 
and y(g): 6(60 °) ~-0.8, a(60 ° ) ~-2.6, y(0.843)~-0.11. Apply- 
ing Eq. (5) to the vertical depth field in Figures 2a 
yields the RIp field in Figure 3b. 

To retrieve the vertical optical depth field from MC 
cloud albedo RM~, we replace R~ by R ~  in Eq. (5) and 
solve it for z using Newton's method. Since R ~  unlike 
R,,, is not necessarily smaller than unity (it is possible 
for more energy to leave a pixel than enters it), we have 
to assume a cutoff for the retrieved r: Individual pixel 
values cannot exceed some large number, for example, 
the one defined in Eq. (2), approximately 100. (There 
are 60 pixels out of 1282= 16,384 that have albedo 
larger than R1~(100; 60°,0.843) = 0.933.) Figure 2b illus- 
trates the resulting retrieved optical depth field. 

COMPARATIVE SPECTRAL ANALYSIS OF 
INHERENT AND APPARENT FIELDS 

MC versus IPA, Original (Inherent) versus Retrieved 
(Apparent) Optical Depth Fields 
Figures 3a and 3b show two albedo fields calculated by 
MC and IPA, respectively, for the modeled optical depth 
field in Figure 2a. Since IPA computations depend only 
on the local pixel properties, they are accurate when 
all pixels have large horizontal optical depth, and there- 
fore few photons are exchanged between pixels, relative 
to the number which exit the top and bottom of each 
pixel. But, in our example, a mean single-pixel horizontal 
optical depth, roix, is only about 2 photon mean free 
paths and there is a dramatic difference between RMc and 
R,F for individual pixels. However, the domain-averaged 
albedoes are very close (within 1%) which is typical 
for stratocumulus clouds (Cahalan et al., 1994b). The 
histograms for RMc and RIp are also plotted in Figure 
3c; apart from the nonvanishing probability of having 
RMc >/1, they look very similar. 

MC albedo (Fig. 3a) is much smoother, visually, 
than its IPA counterpart (Fig. 3b). Similarly, our simple 
IPA retrieval procedure from MC albedo yields a much 
smoother optical depth field (Fig. 2b) than the original 
(Fig. 2a). The energy spectra in Figure 4 confirm our 

Figure 4. Energy spectra. For the optical depth in Figure 
2a and the IPA-retrieved optical depth field in Figure 2b 
(top); for the MC and IPA albedo fields in Figures 3a and 
3b, respectively (bottom). 
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Figure 2. 2-D Optical depth fields, a) 2-D bounded cascade model with n = 7 cascade steps, To = 13 (see Cahalan et al., 
1994a), H = 1 / 3 (fl = 5 / 3 for n -- oo), pl = 0.26, and p2 -- 0.34 [see Cahalan (1994c) with different notations]; the range of verti- 
cal optical depth is from 1.4 to 65.1. The dense regions are white, the least dense regions black. The shade of gray is linear 
in the pixel value, b) Optical depth retrieved from MC albedo in Figure 3a using Eq. (5) as an IPA; its mean value is 13.56, 
close to r0; the range of retrieved r is from 2.0 to 100. c) Histograms for the two optical depth fields in a) and b). 

Figure 3. 2-D Albedo fields, a) MC albedo RMc for Figure 2a, sun at 0 = 60", ~ = 0°; no absorption, Henyey-Greenstein 
phase function with g = 0.843, l0 s photons, (RMc)  = 0.621. The shade of gray is linear in the pixel value, b) Albedo field R~ 
using the IPA formula R(60°,r)= 1 -[0.8 + 0.2 exp(- r/2.6)]/(1 + 0.11r) with r from Figure 2a; (RIP) = 0.615. c) Histograms 
for the two albedo fields in a) and b). Notice the small but finite probability of RMc i> 1. 
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visual impressions. We know that, in the limit of an 
infinite number of cascade steps, the bounded model 
with H=  1 /3  gives ,8--5/3 [Eq. (3b)]; in the present 
case of seven cascades we find ,8= 1.46 while the re- 
trieved optical depth gives ,8--2. IPA albedo has t =  
1.51, while MC albedo shows a much smoother behavior 
with/~ slightly larger than 2. 

2-D MC Calculations, Three Case Studies in Scaling 

To study the smoothing effect of radiation on the hori- 
zontal distribution of the optical depth in cloud fields, 
it is not absolutely necessary to use a 2-D model of 
optical depth; a 1-D model will provide us with similar 
information. Having scale-invariant models in mind, the 
advantage of a 1-D model is evident: For the same 
computer time, we can access a larger range of scales 
than in the 2-D case. For example, instead of a 128 x 128 
grid with only a two-decade range of scales, we can use 
a 16,384 x i grid with a 4-decade range of scales. So, let 
us assume that clouds are now fractal in one horizontal 
direction and uniform in the other horizontal direction 
as well as in the vertical, as in Cahalan et al. (1994a). 

Another simplification is to use 2-D MC radiation 
calculations instead of 3-D ones. In this case the photons 
are confined to the x-z plane where the horizontal 
direction x is a fractal (1-D bounded model) and the 
vertical direction z is uniform. The 2-D analogue of the 
Henyey-Greenstein phase function P(O) with asymmetry 
factor g is (Davis et al., 1989) 

1 - ~  -n<~O<xrt, I~_ P(O)dO=l. 
P(O) = 1 + g2 _ 2g cos 0'  

(6) 
(Notice that there is no exponent 3 / 2 in the denomina- 
tor!) Although 2-D and 3-D radiative transfer are mathe- 
matically distinct problems, running 2-D and 3-D MC 
codes on the same 1-D distribution of optical depth 
yields good agreement in the albedo and transmittance 
fields (the difference of about 0.5% was even lower 
than the MC per-pixel noise). We favor the 2-D MC 
code because: 1) It runs faster (about 10%); 2) a photon 
trajectory is more easily traceable on a 2-D plane than 
in 3-D space; 3) as will be shown elsewhere, it allows 
us to compute the complete distribution of radiance 
using forward MC. In the three examples below we 
made 2-D MC calculations with Henyey-Greenstein 
phase function (g-- 0.843) defined in Eq. (6), for a single 
realization of Cahalan's 1-D bounded model with 10 
cascade steps, p = 0.25 and H = 1 / 3. 

We first vary the single scattering albedo w0. It is 
well known that albedo is a strong function of ~o0 in 
plane-parallel theory; we show here how the smoothness 
of the albedo field depends also on wo. Radiation smoothes 
the albedo field relative to the optical depth field (cf. 
Figs. 2a and 3a) because of multiple scattering. As Wo 
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Figure 5. Energy spectra of MC albedo fields for different 
single scattering albedoes. A 1-D distribution of optical 
depth was simulated by a bounded model with 10 cascade 
steps; to = 13, p = 0.25, and H= I / 3. The aspect ratio is 30. 
The results are for 2-D MC: sun in zenith, 2-D Henyey- 
Greenstein phase function in Eq. (6) with g = 0.843, 107 
photons, mo takes the values 1.0, 0.9999, 0.999, 0.996, 0.99, 
0.96, and 0.9. The inset shows a double-log plot of E(k) ver- 
sus k for four different m0's; slopes yield exponents ft. Note 
that the two points corresponding to the smallest scales 
(MC noise) and the largest scale (poor statistics with just 
one realization) were not used in the linear regressions• 

decreases, the contribution of multiple scattering to the 
albedo field decreases also. Since our optical depth 
model is scale-invariant, the spectral component fl in 
Eq. (1) is the appropriate quantifier of the albedo field's 
smoothness. Figure 5 illustrates the dependence of p 
on (1 - ~0) ] / 2 for ~o0 from 0.9 to 1.0, which covers the 
range of values expected in terrestrial clouds in the 
visible and near infrared. [The inset in Fig. 5 shows 
the scaling on a log-log plot of E(k) versus k for four 
different w0's.] We see that ,8 decreases from almost 2.2 
for Wo = 1.0 to 1.7 for ~o0 = 0.9 (the optical depth field 
has p~-1.6). This tells us that the IPA is accurate on a 
per-pixel basis only at very strongly absorbing wave- 
lengths. 

We next vary the pixel aspect ratio, defined as the 
ratio of vertical to horizontal sizes for a single cell. This 
ratio plays an essential role in comparisons between MC 
and IPA. Small aspect ratios bring each cell closer to the 
plane-parallel case, where the IP assumption becomes 
exact, while large aspect ratios lead to dramatic differ- 
ences in individual pixel values. In Figure 6, fl is plotted 
against aspect ratio. Keeping the vertical size h of the 
cloud constant at 300 m, we have changed the horizontal 
pixel size from 600 m (aspect ratio 0.5, rpix = 26) to 10 m 
(aspect ratio 30, rpix = 0.43). As expected, ]/sharply in- 
creases and levels off at an aspect ratio around 10, which 
corresponds to a mean single-pixel horizontal optical 
thickness, rplx, of about 1 (pixel's size rn, is about 1 
photon mean free path). The two straight lines below 
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Figure 6. Energy spectra of MC albedo fields or different as- 
pect ratios. MC simulations for a 1-D distribution of optical 
depth with the same parameters as in Fig. 5 but tOo = 1 and 
the aspect ratio varies from 0.5 to 30, corresponding to a 
range of mean single-pixel horizontal optical thickness, rpi,, 
from 26 to 0.4. The two horizontal lines indicate/~ values 
for the R~p field (independent of aspect ratio) and for the op- 
tical depth field itself, equal to 1.58 and 1.56, respectively. 
The two squares at aspect ratio 2 show/~ values for the two 
average optical depths: r0 = 6.5 and To = 26. They are equal 
to 1.89 and 1.75, respectively. 

indicate the values of ]~ for both IPA the albedo field 
(#=1.58) and the optical depth field (/~-1.56). This 
tells us that, in absence of absorption, the IPA is accurate 
on a per-pixel basis only when the cloud pixels are 
individually opaque in all horizontal directions. 

Barker and Davies (1992) argued that multiple scat- 
tering has a minor effect on the energy spectrum of the 
albedo field because it is insensitive to the average 
vertical optical depth r0. They found similar energy 
spectra for reflected radiation at three different ro'S (10, 
20, and 50). This is consistent with our results since 
their rplx varied from 0.08 to 0.4 for a fixed aspect ratio 
of 128. However, if we consider optically thick pixels 
(thicker than 1 photon mean free path), the change of 
r0 substantially effects the albedo field. If we fix the 
aspect ratio at 2 and compare the three r0's, 6.5, 13, 
and 26, we find that the smaller average optical depth 
yields the smoother albedo field (/~=1.9 for to= 6.5 
versus/~= 1.75 for r0 = 26). Two square symbols in Fig- 
ure 6 show these values of/~. If, on the contrary, rpix is 
held constant, say at 3, we find that the abledo field 
with To= 13 (/~=2.0) is smoother than the one with 
T0 -- 6.5 (]Y= 1.9). The explanation is simple: For a given 
Tpix, increasing r0 stretches the length of the vertical 
interface between columns; this enhances the horizontal 
photon transport. This tells us that for optically thin 
pixels, increasing T0 has a minor effect on the energy 
spectrum of the albedo field while, for optically thick 

pixels with fixed rpix, increasing ro leads to a smoother 
albedo field. 

SUMMABY AND DISCUSSION 

We use a 2-D generalization of Cahalan et al.'s (1994a) 
1-D bounded cascade model for the horizontal optical 
depth distribution in stratocumulus-type clouds. Both 
3-D Monte Carlo (MC) and the independent pixel ap- 
proximation (IPA) were applied to a single realization 
of this 2-D bounded model (Fig. 2a) to compute the 
albedo fields (Figs. 3a, b). The maximal cross-section 
variance reduction technique is used to make the MC 
code independent of the number of dimensions, the 
variability of optical depth, and the number of cells. A 
simple IPA retrieval procedure allows us to estimate 
the optical depth field from the MC albedo field; the 
retrieved field (Fig. 2b) is much smoother than the 
original one (Fig. 2a). 

The spectral parameter p, defined operationally in 
Eq. (1), can be used to compare quantitatively the 
smoothness of the radiation fields calculated by MC and 
IPA as well as the original and IPA retrieved optical 
depth fields. In remote sensing applications, we are 
interested in the pixel-by-pixel accuracy of the IPA, 
which is measured to a first approximation by how well 
the #'s agree for albedoes and / or optical depths. In our 
2-D simulations of optical depth field, we found a spec- 
tral exponent /~= 1.5 for both the optical depth field 
and the IPA albedo field, while the MC albedo field 
and the optical depth field retrieved from it have/~= 2 
(Fig. 4). 

Three sensitivity studies were also performed: the 
single scattering albedo w0, the pixel aspect ratio, and 
the average optical depth r0 were varied. As expected, 
/~ is a sensitive function of both the single scattering 
albedo and the aspect ratio and is determined largely 
by the horizontal photon transport. As the aspect ratio 
increases (pixels become horizontally thinner), more 
and more neighboring pixels become "aware" of each 
other by exchanging photons in different amounts in 
the different horizontal directions. This smoothes the 
radiation fields and ]~ increases, up to an aspect ratio 
corresponding to a single-pixel horizontal thickness of 
about one photon mean free path on average (Fig. 6). 
In addition to being a monotonic function of the aspect 
ratio,/~ decreases with the single scattering albedo ~o0 
(Fig. 5), because absorption also inhibits net horizontal 
photon transport. Finally, the sensitivity of/~ to the varia- 
tion of the average vertical optical depth r0 was studied. 
We found that, when pixels are optically thin on average 
(smaller than a typical photon free path),/~ is insensitive 
to changes in r0 while, for optically thick pixels, increas- 
ing r0 leads to smoother albedo fields (Fig. 6). 

In summary, we have used spectral analysis to strongly 
caveat Cahalan et al. (1994a,b) implication that the 
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IPA is an accurate way of evaluating cloud radiation 
properties, even within the framework of unbroken stra- 
tus-type cloud fields. We find that the IPA does well at 
large scales but generally predicts the wrong pixel-to- 
pixel correlations in the albedo field when the scattering 
is conservative or almost conservative. Since the IPA is 
an essential ingredient in cloud optical depth retrievals 
from satellite and aircraft radiometry (e.g., Nakajima 
and King, 1990), we recommend using exclusively wave- 
length channels with strong absorption when pixels sizes 
are small (less than 100 m). 
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